## **GMP RESEARCH SUMMARY**

## Discovering GMP was good, but not good enough. Over 10 years of pre-clinical and clinical studies led to the purposeful design of **Glytactin** (GMP). *And the* **Glytactin** *proof continues to grow.*

The research data using Glycomacropeptide (GMP) based Medical Foods for PKU is mounting. GMP is a naturally occurring, whole protein, produced during the cheese making process. It is one of several proteins that make up whey and is the only naturally occurring protein that does not contain Phenylalanine (Phe) in its pure form. GMP must be supplemented with limiting amino acids (AA) to provide a nutritionally complete protein. The 5 limiting amino acids include, Arginine, Histidine, Leucine, Tryptophan, and Tyrosine (Tyr).

Research utilizing GMP protein for PKU began in 2000. Below you will find summaries of vital publications from 3 different research groups in 3 different countries with a total of 78 subjects aged 5 to 49 years old. Three of these studies utilized Cambrooke's patented blend of GMP + limiting AA, called **Glytactin**<sup>™</sup>, but were not funded by Cambrooke Therapeutics.

| Citation                                                                                                                                                                                                                                         | Design                                                                                                                                                                                                                                                        | Subjects                                                                                                                                     | Method                                                                                                                                                                                                                                                                                                                                                                                                                                | % PE &<br>mg Phe/day<br>from GMP                                                                                                                                | Phe from<br>Diet NOT<br>reduced                                                                                       | Phe<br>Levels<br>Stable | Tyr Levels<br>Stable or<br>Improved | Body<br>Composition<br>Stable | Other Findings or Conclusions<br>by the Authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MacLeod, EL. et.al.<br>Breakfast with<br>glycomacropeptide<br>compared with amino acids<br>suppresses plasma ghrelin<br>levels in individuals with<br>phenylketonuria.<br>Am J Clin Nutr 2009;89:1068–77<br>DOI: 10.1016/j.<br>ymgme.2010.04.003 | <b>Prospective, Inpatient</b><br><b>Observational Study</b><br>Duration of study: Two<br>treatment stages each lasting<br>4 days with a 2 day wash out<br>prior to starting the trial<br>Phe tolerance verified by<br>one or more 5 day validation<br>periods | 11 adolescents and<br>adults in the US<br>Age: 11-31 years<br>Gender:<br>4 Females<br>7 Males<br>Classical PKU (n= 10)<br>Variant PKU (n= 1) | <ul> <li>Participants consumed the same<br/>low-Phe weighted diet for 4 days<br/>with AA-MF followed by 4 days<br/>with an experimental GMP-MF</li> <li>Plasma concentrations of AAs,<br/>insulin and ghrelin were drawn<br/>fasting and 180 minutes following<br/>the start of breakfast</li> <li>Satiety was assessed using a visual<br/>analog scale before, immediately<br/>after, and 180 minutes after<br/>breakfast</li> </ul> | 100% PE from<br>GMP for 4 days<br>Daily Phe<br>allowance<br>Mean 13± 2 mg/<br>kg/day<br>Range: 372 mg/<br>day (5.8 mg/kg)<br>up to 1793 mg/<br>day (26.7 mg/kg) | Low-Phe<br>weighted diet<br>was adjusted<br>to maintain<br>the same<br>intake of Phe<br>in each stage<br>of the study |                         | <b>⊻</b>                            | n/a                           | <ul> <li>The nutritional management of PKU is in need<br/>of new dietary options besides synthetic AAs<br/>in order to improve metabolic control and<br/>control hunger</li> <li>Results confirm the importance of protein<br/>consumption in a meal to improve satiety</li> <li>Novel evidence that a breakfast containing<br/>a GMP-MF suppresses plasma levels of the<br/>satiety hormone ghrelin for a longer period of<br/>time compared with a breakfast using AA-MF</li> <li>Medical food products made with the intact,<br/>low-phe protein GMP are a first step to<br/>providing a more physiologically complete<br/>diet that improves dietary options, and<br/>facilitates protein distribution with metabolic<br/>control of PKU</li> </ul> |
| van Calcar, SC. et. al.<br>Improved nutritional<br>management of phenylketonuria<br>by using a diet containing<br>glycomacropeptide compared<br>with amino acids.<br>Am J Clin Nutr. 2010<br>Apr;91(4):1072<br>DOI: 10.3945/ajcn.2008.27280      | <b>Prospective, Inpatient</b><br><b>Observational Study</b><br>Duration of study: Two<br>treatment stages each lasting<br>4 days with a 2 day wash out<br>prior to starting the trial<br>Phe tolerance verified by<br>one or more 5 day validation<br>periods | 11 adolescents and<br>adults in the US<br>Age: 11-31 years<br>Gender:<br>4 Females<br>7 Males<br>Classical PKU (n= 10)<br>Variant PKU (n= 1) | <ul> <li>Participants consumed the same<br/>low-Phe weighted diet for 4 days<br/>with AA-MF followed by 4 days<br/>with an experimental GMP-MF</li> <li>Compared plasma concentrations<br/>of AAs, blood chemistries, and<br/>insulin were measured pre and<br/>post prandial after AA (day 4) and<br/>GMP diets (day 8)</li> </ul>                                                                                                   | 100% PE from<br>GMP for 4 days<br>Daily Phe<br>allowance<br>Mean 13± 2 mg/<br>kg/day<br>Range: 372 mg/<br>day (5.8 mg/kg)<br>up to 1793 mg/<br>day (26.7 mg/kg) | Low-Phe<br>weighted diet<br>was adjusted<br>to maintain<br>the same<br>intake of Phe<br>in each stage<br>of the study | Y                       | V                                   | n/a                           | <ul> <li>GMP, when supplemented properly with<br/>limiting AAs, is a safe and highly acceptable<br/>alternative to synthetic AAs as the primary<br/>protein source in the nutritional management<br/>of PKU</li> <li>As an intact protein source, GMP-MF improves<br/>protein retention and phenylalanine<br/>utilization based on lower serum BUN, higher<br/>plasma insulin levels, and higher plasma AA<br/>concentrations when compared with AA-MFs</li> </ul>                                                                                                                                                                                                                                                                                      |



CAMBROOKE THERAPEUTICS 866 456 9776 cambrooke.com



## **GMP RESEARCH SUMMARY**



| Citation                                                                                                                                                                                                                                                  | Design                                                                                                                                | Subjects                                                                                                                                           | Method                                                                                                                                                                                                                                                                               | % PE &<br>mg Phe/day<br>from GMP                                                                      | Phe from<br>Diet NOT<br>reduced | Phe<br>Levels<br>Stable | Tyr Levels<br>Stable or<br>Improved | Body<br>Composition<br>Stable                              | Other Findings or Conclusions<br>by the Authors                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ney, DM. et. al.<br>Glycomacropeptide for<br>nutritional management of<br>phenylketonuria: a randomized,<br>controlled, crossover trial.<br>AJCN. 2016<br>DOI: 10.3945/ajcn.116.135293                                                                    | Prospective Randomized<br>Crossover Interventional<br>Study<br>Duration of study: 3 weeks<br>per stage with 3 week wash<br>out period | 30 adolescents and<br>adults in the US<br>Age: 15 to 49 years<br>Gender:<br>18 Females<br>12 Males<br>Classical PKU (n= 20)<br>Variant PKU (n= 10) | <ul> <li>Participants consumed a low-Phe diet with AA-MF or Glytactin</li> <li>Obtained plasma AA with Phe &amp; Tyr levels on filter paper</li> <li>Diet records analyzed for protein, calorie, &amp; micronutrient intakes</li> <li>Average daily PE intake 80 ±4 g/day</li> </ul> | 100% PE from<br>Glytactin<br>88 ±6 mg<br>Phe/day from<br>Glytactin                                    | ¥                               | ¥                       | ¥                                   | ¥                                                          | <ul> <li>Serum Tyr levels improved with Glytactin despite a reduction in intake</li> <li>Frequency of medical food intake was higher with Glytactin GMP-MF (3.74) vs. AA-MF (2.43)</li> <li>Subjects rated Glytactin GMP-MFs as more acceptable (4.47) than AA-MFs (3.34)</li> <li>Gl distress and hunger resolved with Glytactin GMP-MF</li> </ul>                                                |
| Pinto, A. et al.<br>Nutritional status in patients<br>with phenylketonuria using<br>glycomacropeptide as their<br>major protein source.<br>Eur J Clin Nutr. 2017<br>DOI: 10.1038/ejcn.2017.38                                                             | Retrospective<br>Longitudinal Chart Review<br>Duration of study: 7-13<br>months on Glytactin GMP<br>MF                                | 11 adolescents and<br>adults in Portugal<br>Age: 13 to 42 years<br>Gender:<br>8 females<br>3 males<br>Classical PKU (n=6)<br>Variant PKU (n=5)     | <ul> <li>Blood Phe and Tyr were analyzed before and after introduction of <b>Glytactin</b></li> <li>Diet records analyzed for protein, calorie, &amp; micronutrient intakes</li> <li>Average daily PE intake 80 g/day</li> </ul>                                                     | Mean 57% of PE<br>from <b>Glytactin</b><br>(27-100%)<br>34 ±12 mg<br>Phe/day from<br><b>Glytactin</b> | V                               | V                       | V                                   | ſ <b>⊘</b>                                                 | <ul> <li>Serum Tyr levels improved with Glytactin despite a reduction in intake</li> <li>Despite the higher calories from Glytactin GMP-MF used, overall caloric intake was decreased possibly related to report of improved satiety</li> <li>Improved serum Phe/Tyr ratio, which may indicate better executive function, inhibitory control, and reflect serotonin levels in the brain</li> </ul> |
| Daly A. et al.<br>Does the additional phenylalanine<br>in GMP-AA protein substitute<br>lead to destabilization of blood<br>phenylalanine concentrations<br>compared to conventional amino<br>acid protein substitutes?<br>ICIEM. Sept 2017. Abstract 166. | <b>Prospective, Longitudinal,<br/>Interventional Study</b><br>Duration of Study: 12 to 24<br>months                                   | 36 children in the UK<br>Age: 5-16 years<br>Gender:<br>21 boys<br>15 girls                                                                         | <ul> <li>25 received a <u>GMP based MF</u><br/>(<u>GMP-AA</u>) and 11 received<br/>standard AA-MF</li> <li>Median PE intake per day = 60 g<br/>PE/day (Range 50-80 g PE/day)</li> <li>Serum Phe levels checked weekly</li> </ul>                                                     | Mean 73% of PE<br>from GMP<br>Range (33-100%)<br>Median 81 mg<br>Phe/day from<br>GMP-AA               | Ø                               | Y                       | V                                   | Not Reported                                               | <ul> <li>No significant difference for serum Phe or Tyr<br/>levels when 75% of daily PE intake provided<br/>by GMP-AA based medical foods</li> <li>No dietary adjustments need to be made to<br/>compensate for Phe provided by GMP-AA<br/>based medical foods</li> </ul>                                                                                                                          |
| Pinto, A. et al.<br>Dietary management of<br>maternal phenylketonuria with<br>glycomacropepetide and amino<br>acids supplements: a case report.<br>Mol Genet Metab Rep. 2017<br>DOI: 10.1016/j.<br>ymgmr.2017.10.004                                      | <b>Retrospective Case Report</b><br>Duration of Study: 28 months                                                                      | 31 year old G1P0 female<br>with classical PKU and<br>history of poor metabolic<br>control                                                          | <ul> <li>Glytactin GMP-MF was started to provide 30 PE/day 18 months prior to pregnancy</li> <li>Total PE from MF increased from 58 to 86 g/day during pregnancy but AA-MF provided all additional PE intake</li> <li>Serum Phe and Tyr levels checked weekly</li> </ul>             | 35-52% PE from<br><b>Glytactin</b><br>46 mg Phe/ day<br>from <b>Glytactin</b>                         | V                               | Y                       | ¥                                   | Normal rate<br>of maternal<br>weight gain for<br>pregnancy | <ul> <li>First case reporting the use of Glytactin<br/>GMP-MF in MPKU</li> <li>Median blood PHE was 258 µmol/L<br/>throughout pregnancy</li> <li>Serum Tyr levels improved during pregnancy</li> <li>Some intrauterine development delay<br/>occurred in the last trimester, although this<br/>was not associated with MPKU syndrome or<br/>the use of Glytactin GMP-MF</li> </ul>                 |



CAMBROOKE THERAPEUTICS 866 456 9776 cambrooke.com

FY You G+